
C H A P T E R 4

Engineering Simple Interest Rate
Derivatives

1. Introduction

Foreign currency and commodity forwards (futures) are the simplest types of derivative instru-
ments. The instruments described in this chapter are somewhat more complicated. The chapter
discusses financial engineering methods that useforward loans, Eurocurrency futures,andfor-
ward rate agreements(FRAs). The discussion prepares the ground for the next two chapters on
swap-based financial engineering. In fact, the FRA contracts considered here are precursors to
plain vanilla swaps.

Interest rate strategies, hedging, and risk management present more difficulties than FX,
equity, or commodity-related instruments for at least two reasons. First of all, the payoff of an
interest rate derivative depends, by definition, on some interest rate(s). In order to price the
instrument, one needs to apply discount factors to the future payoffs and calculate the relevant
present values. But the discount factor itself is an interest rate-dependent concept. If interest
rates arestochastic, the present value of an interest rate-dependent cash flow will be a nonlinear
random variable; the resulting expectationsmaynot be as easy to calculate. There will betwo
sourcesof any future fluctuations—those due to future cash flows themselves and those due
to changes in thediscount factorapplied to these cash flows. When dealing with equity or
commodity derivatives, such nonlinearities are either not present or have a relatively minor
impact on pricing.

Second, every interest rate is associated with a maturity ortenor. This means that, in the case
of interest rate derivatives we are not dealing with a single random variable, but with vector-
valued stochastic processes. The existence of such a vector-valued random variable requires
new methods of pricing, risk management, and strategic position taking.

1.1. A Convergence Trade

Before we start discussing replication of elementary interest rate derivatives we consider a real
life example.
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84 C H A P T E R 4. Engineering Simple Interest Rate Derivatives

For a number of years before the European currency (euro) was born, there was significant
uncertainty as to which countries would be permitted to form the group of euro users. During
this period, market practitioners put in place the so-calledconvergence plays. The reading that
follows is one example.

Example:

Last week traders took positions on convergence at the periphery of Europe.

Traders sold the spread between the Italian and Spanish curves. JP Morgan urged its
customers to buy a 12×24 Spanish forward rate agreement (FRA) and sell a 12×24
Italian FRA. According to the bank, the spread, which traded at 133 bp would move
down to below 50 bp.

The logic of these trades was that if Spain entered the single currency, then Italy would
also do so. Recently, the Spanish curve has traded below the Italian curve. According to
this logic, the Italian yield curve would converge on the Spanish yield curve, and traders
would gain. (Episode based on IFR issue number 1887).

In this episode, tradersbuyandsell spreadsin order to benefit from a likely occurrence of an
event. These spreads are bought and sold using the FRAs, which we discuss in this chapter. If the
two currencies converge, thedifferencebetween Italian and Spanish interest rates will decline.1

The FRA positions will benefit. Note that market professionals call thisselling the spread. As
the spread goesdown, they will profit—hence, in a sense they areshortthe spread.

This chapter develops the financial engineering methods that use forward loans, FRAs, and
Eurocurrency futures. We first discuss these instruments and obtain contractual equations that
can be manipulated usefully to produce other synthetics. The synthetics are used to provide
pricing formulas.

2. Libor and Other Benchmarks

We first need to define the concept of Libor rates. The existence of such reliablebenchmarksis
essential for engineering interest rate instruments.

Libor is an arithmetic average interest rate that measures the cost of borrowing from the point
of view of a panel of preselectedcontributorbanks in London. It stands for London Interbank
Offered Rate. It is the ask or offer price of money available only to banks. It is an unsecured rate
in the sense that the borrowing bank does not post any collateral. The BBA-Libor is obtained
by polling a panel of preselected banks in London.2 Libor interest rates are published daily at
11:00 London time for nine currencies.

Euribor is a similar concept determined in Brussels by polling a panel of banks in continental
Europe. These two benchmarks will obviously be quite similar. London banks and Frankfurt
banks face similar risks and similar costs of funding. Hence they will lend euros at approximately
the same rate. But Libor and Euribor may have some slight differences due to the composition
of the panels used.

Important Libor maturities are overnight, one week, one, two, three, six, nine, and twelve
months. A plot of Libor rates against their maturities is called the Libor curve.

Libor is a money market yield and in most currencies it is quoted on the ACT/360 basis.
Derivatives written on Libor are called Libor instruments. Using these derivatives and the
underlying Euromarket loans, banks create Libor exposure. Tibor (Tokyo) and Hibor (Hong
Kong) are examples of other benchmarks that are used for the same purpose.

1 Although each interest rate may go up or down individually.

2 BBA stands for the British Bankers Association.
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When we use the term “interest rates” in this chapter, we often mean Libor rates. We can now
define the major instruments that will be used. The first of these are the forward loans. These
are not liquid, but they make a good starting point. We then move to forward rate agreements
and to Eurocurrency futures.

3. Forward Loans

A forward loanis engineered like any forward contract, except that what is being bought or sold
is not a currency or commodity, but instead, aloan. At time t0 we write a contract that will settle
at a future datet1. At settlement the trader receives (delivers) a loan that matures att2, t1 < t2.
The contract will specify the interest rate that will apply to this loan. This interest rate is called
theforward rateand will be denoted byF (t0, t1, t2). The forward rate is determined att0. The
t1 is the start date of the future loan, andt2 is the date at which the loan matures.

The situation is depicted in Figure 4-1. We write a contract att0 such that at a future date,
t1, USD100 are received; the principal and interest are paid att2. The interest isFt0δ, whereδ
is the day-count adjustment, ACT/360:

δ =
t2 − t1

360
(1)

To simplify the notation, we abbreviate theF (t0, t1, t2) asFt0 . As in Chapter 3, the day-count
convention needs to be adjusted if a year is defined as having 365 days.

Forward loans permit a great deal of flexibility in balance sheet, tax, and risk management.
The need for forward loans arises under the following conditions:

• A business would like tolock in the “current”low borrowing rates from money markets.
• A bank would like tolock in the “current”high lending rates.
• A business may face a floating-rate liability at timet1. The business may want tohedge

this liability by securing a future loan with a known cost.

It is straightforward to see how forward loans help to accomplish these goals. With the forward
loan of Figure 4-1, the party has agreed to receive 100 dollars att1 and to pay them back att2
with interest. The key point is that the interest rate on this forward loan is fixed at timet0. The
forward rateF (t0, t1, t2) “locks in” an unknown future variable at timet0 and thus eliminates
the risk associated with the unknown rate. TheLt1 is the Libor interest rate for a (t2 − t1) period
loan and can be observed only at the future datet1. Fixing F (t0, t1, t2) will eliminate the risk
associated withLt1 .

The chapter discusses several examples involving the use of forward loans and their more
recent counterparts, forward rate agreements.

Pay principal and interest
2(1 1 Ft0

d)100

Receive 100

t2t1t0

FIGURE 4-1
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3.1. Replication of a Forward Loan

In this section we apply the techniques developed in Chapter 3 to forward loans and thereby
obtain synthetics for this instrument. More than the synthetic itself, we are concerned with the
methodology used in creating it. Although forward loans are not liquid and rarely traded in the
markets, the synthetic will generate a contractual equation that will be useful for developing
contractual equations for FRAs, and the latterare liquid instruments.

We begin the engineering of a synthetic forward loan by following the same strategy outlined
in Chapter 3. We first decompose the forward loan cash flows into separate diagrams and then
try to convert these into known liquid instruments by adding and subtracting appropriate new
cash flows. This is done so that, when added together, the extra cash flows cancel each other out
and the original instrument is recovered. Figure 4-2 displays the following steps:

1. We begin with the cash flow diagram for the forward loan shown in Figure 4-2a. We
detachthe two cash flows into separate diagrams. Note that at this stage, these cash flows
cannot form tradeable contracts. Nobody would want to buy 4-2c, and everybody would
want to have 4-2b.

(a)
1100

2(1 1 Ft 0
d)100

2(1 1 Ft 0
d)100

2Ct 0

1Ct 0

t2

t2

t1t0

t1t0

t2t1t0

t2t1t0

t2t1t0

(b)
1100

1100

(c)

(d)

2Ct 0
1 interest

(e)

FIGURE 4-2
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2. We need to transform these cash flows into tradeable contracts by adding compensating
cash flows in each case. In Figure 4-2b we add anegativecash flow, preferably at time
t0.3 This is shown in Figure 4-2d. Denote the size of the cash flow by−Ct0 .

3. In Figure 4-2c, add apositivecash flow at timet0, to obtain Figure 4-2e. The cash flow
has size+Ct0 .

4. Make sure that the vertical addition of Figures 4-2d and 4-2e will replicate what we
started with in Figure 4-2a. For this to be the case, the two newly added cash flows have
to be identical in absolute value but different in sign. A vertical addition of Figures 4-2d
and 4-2e will cancel any cash exchange at timet0, and this is exactly what is needed to
duplicate Figure 4-2a.4

At this point, the cash flows of Figure 4-2d and 4-2e need to be interpreted as specific finan-
cial contracts so that the components of the synthetic can be identified. There are many ways to
do this. Depending on the interpretation, the synthetic will be constructed using different assets.

3.1.1. Bond Market Replication

As usual, we assume credit risk away. A first synthetic can be obtained using bond and T-bill
markets. Although this is not the way preferred by practitioners, we will see that the logic
is fundamental to financial engineering. Suppose default-free pure discount bonds of specific
maturities denoted by{B(t0, ti), i = 1, . . . n} trade actively.5 They have par value of 100.

Then, within the context of a pure discount bond market, we can interpret the cash flows in
Figure 4-2d as alongposition in thet1-maturity discount bond. The trader is payingCt0 at time
t0 and receiving100 at t1. This means that

B(t0, t1) = Ct0 (2)

Hence, the value ofCt0 can be determined if the bond price is known.
The synthetic for the forward loan will be fully described once we put a label on the cash flows

in Figure 4-2e. What do these cash flows represent? These cash flows look like an appropriate
shortposition in at2-maturity discount bond.

Does this mean we need to shortoneunit of theB(t0, t2)? The answer is no, since the time
t0 cash flow in Figure 4-2e has to equalCt0 .6 However, we know that at2-maturity bond will
necessarily be cheaper than at1-maturity discount bond.

B(t0, t2) < B(t0, t1) = Ct0 (3)

Thus, shortingonet2-maturity discount bond will not generate sufficient time-t0 funding for
the position in Figure 4-2d. The problem can easily be resolved, however, by shorting not one
butλ bonds such that

λB(t0, t2) = Ct0 (4)

But we already know thatB(t0, t1) = Ct0 . So theλ can be determined easily:

λ =
B(t0, t1)
B(t0, t2)

(5)

3 Otherwise, if we add it at any other time, we get another forward loan.

4 That is why both cash flows have sizeCt0 and are of opposite sign.

5 TheB(t0, ti) are also called default-free discount factors.

6 Otherwise, time-t0 cash flows will not cancel out as we add the cash flows in Figures 4-2d and 4-2e vertically.
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According to (3)λ will be greater than one. This particular short positionwill generate enough
cash for the long position in thet1 maturity bond. Thus, we finalized the first synthetic for the
forward loan:

{Buy onet1-discount bond, shortB(t0, t1)
B(t0, t2)

units of thet2-discount bond} (6)

To double-check this result, we add Figures 4-2d and 4-2e vertically and recover the original
cash flow for the forward loan in Figure 4-2a.

3.1.2. Pricing

If markets are liquid and there are no other transaction costs, arbitrage activity will make sure
that the cash flows from the forward loan and from the replicating portfolio (synthetic) are the
same. In other words the sizes of the time-t2 cash flows in Figures 4-2a and 4-2e should be
equal. This implies that

1 + F (t0, t1, t2)δ =
B(t0, t1)
B(t0, t2)

(7)

where theδ is, as usual, the day-count adjustment.
This arbitrage relationship is of fundamental importance in financial engineering. Given

liquid bond prices{B(t0, t1), B(t0, t2)}, we can price the forward loanoff the bond markets
using this equation. More important, equality (7) shows that there is a crucial relationship
between forward rates at different maturities and discount bond prices. But discount bond prices
arediscountswhich can be used in obtaining the present values of future cash flows. This means
that forward rates are of primary importance in pricing and risk managing financial securities.

Before we consider a second synthetic for the forward loan, we prefer to discuss how all this
relates to the notion of arbitrage.

3.1.3. Arbitrage

What happens when the equality in formula (7) breaks down? We analyze two cases assuming
that there are no bid-ask spreads. First, suppose market quotes at timet0 are such that

(1 + Ft0δ) >
B(t0, t1)
B(t0, t2)

(8)

where the forward rateF (t0, t1, t2) is again abbreviated asFt0 . Under these conditions, a market
participant can secure a synthetic forward loan in bond markets at a cost below the return that
could be obtained from lending in forward loan markets. This will guarantee positive arbitrage
gains. This is the case since the “synthetic”funding cost, denoted byF ∗

t0 ,

F ∗
t0 =

B(t0, t1)
δB(t0, t2)

− 1
δ

(9)

will be less than the forward rate,Ft0 . The position will be riskless if it is held until maturity
datet2.

These arbitrage gains can be secured by (1) shortingB(t0, t1)
B(t0, t2)

units of thet2-bond, which
generatesB(t0, t1) dollars at timet0, then (2) using these funds buying onet1-maturity bond,
and (3) at timet1 lending, at rateFt0 , the 100 received from the maturing bond. As a result of
these operations, at timet2, the trader would oweB(t0,t1)

B(t0,t2)
100 and would receive(1+Ft0δ)100.

The latter amount is greater, given the condition (8).
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Now consider the second case. Suppose time-t0 markets quote:

(1 + Ft0δ) <
B(t0, t1)
B(t0, t2)

(10)

Then, one can take the reverse position. BuyB(t0, t1)
B(t0, t2)

units of thet2-bond at timet0. To
fund this, short aB(t0, t1) bond and borrow 100 forward. When timet2 arrives, receive the
B(t0, t1)
B(t0, t2)

100 and pay off the forward loan. This strategy can yield arbitrage profits since the
funding cost during[t1, t2] is lower than the return.

3.1.4. Money Market Replication

Now assume that all maturities of deposits up to 1 year are quoted actively in the interbank
money market. Also assume there are no arbitrage opportunities. Figure 4-3 shows how an alter-
native synthetic can be created. The cash flows of a forward loan are replicated in Figure 4-3a.
Figure 4-3c shows a Euromarket loan.Ct0 is borrowed at the interbank rateL2

t0 .7 The time-t2
cash flow in Figure 4-3c needs to be discounted using this rate. This gives

Ct0 =
100(1 + Ft0δ)
(1 + L2

t0δ
2)

(11)

whereδ2 = (t2 − t0)/360.

1100

Deposit Ct 0
Present value of 100

t0 t1 t2

(b)

1100(a)

t0 t1 t2

2(1 1 Ft 0
d)100

Forward loan

Borrow Ct 0

t0 t1 t2

2(1 1 Lt 0
2d2)Ct0

Pay principal and interest

(c)

FIGURE 4-3

7 Here theL2
t0

means the time-t0 Libor rate for a “cash” loan that matures at timet2.
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Then,Ct0 is immediately redeposited at the rateL1
t0 at the shorter maturity. To obtain

Ct0(1 + L1
t0δ

1) = 100 (12)

with δ1 = (t1 − t0)/360. This is shown in Figure 4-3b.
Adding Figures 4-3b and 4-3c vertically, we again recover the cash flows of the forward

loan. Thus, the two Eurodeposits form a second synthetic for the forward loan.

3.1.5. Pricing

We can obtain another pricing equation using the money market replication. In Figure 4-3, if the
credit risks are the same, the cash flows at timet2 would be equal, as implied by equation (11).
This can be written as

(1 + Ft0δ)100 = Ct0(1 + L2
t0δ

2) (13)

whereδ = (t2 − t1)/360. We can substitute further from formula (12) to get the final pricing
formula:

(1 + Ft0δ)100 =
100(1 + L2

t0δ
2)

(1 + L1
t0δ

1)
(14)

Simplifying,

(1 + Ft0δ) =
1 + L2

t0δ
2

1 + L1
t0δ

1 (15)

This formula prices the forward loan off the money markets. The formula also shows the impor-
tant role played byLibor interest rates in determining the forward rates.

3.2. Contractual Equations

We can turn these results into analytical contractual equations. Using the bond market replication,
we obtain

Forward loan that
begins att1 and ends
at t2

=

Short
B(t0, t1)/B(t0, t2)
units oft2 maturity
bond

+ Long at1-maturity
bond

(16)

If we use the money markets to construct the synthetic, the contractual equation becomes

Forward loan that
beginst1 and ends
at t2

= Loan with
maturityt2

+ Deposit with
maturityt1

(17)

These contractual equations can be exploited for finding solutions to some routine problems
encountered in financial markets although they do have drawbacks. Ignoring these for the time
being we give some examples.
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3.3. Applications

Once a contractual equation for a forward loan is obtained, it can be algebraically manipulated
as in Chapter 3, to create further synthetics. We discuss two such applications in this section.

3.3.1. Application 1: Creating a Synthetic Bond

Suppose a trader would like to buy at1-maturity bond at timet0. The trader also wants this
bond to beliquid. Unfortunately, he discovers that the only bond that is liquid is anon-the-run
Treasury with a longer maturity oft2. All other bonds areoff-the-run.8 How can the trader create
the liquid short-term bond synthetically assuming that all bonds are of discount type and that,
contrary to reality, forward loans are liquid?

Rearranging equation (16), we get

Long t1-maturity
bond

= Forward loan from
t1 to t2

−
Short
B(t0, t1)/B(t0, t2)
units oft2-maturity
bond

(18)

The minus sign in front of a contract implies that we need toreversethe position. Doing
this, we see that at1-maturity bond can be constructed synthetically by arranging a forward loan
from t1 to t2 and then by goinglong B(t0, t1)

B(t0, t2)
units of the bond with maturityt2. The resulting

cash flows would be identical to those of a short bond. More important, if the forward loan and
the long bond are liquid, then the synthetic will be more liquid than any existing off-the-run
bonds with maturityt1. This construction is shown in Figure 4-4.

3.3.2. Application 2: Covering a Mismatch

Consider a bank that has amaturity mismatchat timet0. The bank has borrowedt1-maturity
funds from Euromarkets and lent them at maturityt2. Clearly, the bank has to roll over the
short-term loan that becomes due at timet1 with a new loan covering the period[t1, t2]. This
new loan carries an (unknown) interest rateLt1 and creates a mismatch risk. The contractual
equation in formula (17) can be used to determine ahedgefor this mismatch, by creating a
synthetic forward loan, and, in this fashion, locking in time-t1 funding costs.

In fact, we know from the contractual equation in formula (17) that there is a relationship
between short and long maturity loans:

t2-maturity loan = Forward loan from
t1 to t2

− t1-maturity deposit (19)

8 An on-the-run bond is a liquid bond that is used by traders for a given maturity. It is the latest issue at that maturity.
An off-the-run bond has already ceased to have this function and is not liquid. It is kept in investors’ portfolios.
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B(t0, t1)

B(t0, t2)

B(t0, t1)

B(t0, t2)

t0 t1 t2

1.00units of t2-bond . . .
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11.00

Borrow 1.00 forward . . .

FIGURE 4-4

Changing signs, this becomes

t2-maturity loan = Forward loan from
t1 to t2

+ t1-maturity loan (20)

According to this the forward loan converts the short loan into a longer maturity loan and in
this way eliminates the mismatch.

4. Forward Rate Agreements

A forward loan contract implies not one buttwo obligations. First, 100 units of currency will
have to be received at timet1, and second, interestFt0 has to be paid. One can see several
drawbacks to such a contract:

1. The forward borrower may not necessarily want to receive cash at timet1. In most hedging
and arbitraging activities, the players are trying tolock in an unknown interest rate and
are not necessarily in need of “cash.” A case in point is the convergence play described
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in Section 2, where practitioners were receiving (future) Italian rates and paying (future)
Spanish rates. In these strategies, the objective of the players was totake a positionon
Spanish and Italian interest rates. None of the parties involved had any wish to end up
with a loan in one or two years.

2. A second drawback is that forward loan contracts involvecredit risk. It is not a good idea
to put a credit risk on a balance sheet if one wanted to lock in an interest rate.9

3. These attributes may make speculators and arbitrageurs stay away from any potential
forward loan markets, and the contract may beilliquid .

These drawbacks make the forward loan contract a less-than-perfect financial engineering
instrument. A good instrument wouldseparatethe credit risk and the interest rate commitment
that coexist in the forward loan. It turns out that there is a nice way this can be done.

4.1. Eliminating the Credit Risk

First, note that a player using the forward loanonlyas a tool to lock in the future Libor rateLt1

will immediately have to relend the USD100 received at timet1 at the going market rateLt1 .
Figure 4-5a displays a forward loan committed at timet0. Figure 4-5b shows the corresponding

t0 t1

Contract initiated 
at t0

Unknown at t0

(a)

(b)

(c)

2(1 1 Ft0d)100

2(1 1 Lt1d)100

2Ft0d100

Lt1d100

2100

100

Contract to be initiated
 at t1

?

t2

t0 t1 t2

t0 t1
t2

Receive floating

Pay fixed

FIGURE 4-5

9 Note that the forward loan in Figure 4-1 assumes the credit risk away.
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spotdeposit. The practitioner waits until timet1 and then makes a deposit at the rateLt1 , which
will be known at that time. This “swap”cancelsan obligation to receive 100 and ends up with
only the fixed rateFt0 commitment.

Thus, the joint use of a forward loan, and a spot depositto bemade in the future, is sufficient
to reach the desired objective—namely, to eliminate the risk associated with the unknown Libor
rateLt1 . These steps will lock inFt0 . We consider the result of this strategy in Figure 4-5c. Add
vertically the cash flows of the forward loan (4-5a) and the spot loan (4-5b). Time-t1 cash flows
cancel out since they are in the same currency. Time-t2 payment and receipt of the principal
will also cancel. What is left is the respective interest payments. This means that the portfolio
consisting of

{A forward loan fort1 initiated att0, a spot deposit att1} (21)

will lead, according to Figure 4-5c, to the following (net) cash flows:

Cash paid Cash received Total

Time t1 −100 +100 0
Time t2 −100(1 + Ft0δ) 100(1 + Lt1δ) 100(Lt1 − Ft0)δ

Thus, letting the principal of the forward loan be denoted by the parameterN , we see that
the portfolio in expression (21) results in a time-t2 net cash flow equaling

N(Lt1 − Ft0)δ (22)

whereδ is the day’s adjustment to interest, as usual.

4.2. Definition of the FRA

This is exactly where the FRA contract comes in. If a client has the objective of locking in the
future borrowing or lendingcostsusing the portfolio in (21), why not offer this to him or her in
asinglecontract? This contract will involveonly the exchange of two interest payments shown
in Figure 4-5c.

In other words, we write a contract that specifies a notional amount,N , the datest1 andt2,
and the “price”Ft0 , with payoffN(Lt1 −Ft0)δ.10 This instrument is apaid-in-arrearsforward
rate agreement or a FRA.11 In a FRA contract, thepurchaseraccepts the receipt of the following
sum at timet2:

(Lt1 − Ft0)δN (23)

if Lt1>Ft0 at datet1. On the other hand, the purchaser pays

(Ft0 − Lt1)δN (24)

if Lt1<Ft0 at datet1. Thus, the buyer of the FRA will payfixedandreceivefloating.

10 TheN represents anotionalprincipal since the principal amount will never be exchanged. However, it needs to
be specified in order to determine the amount of interest to be exchanged.

11 It is paid-in-arrears because the unknown interest,Lt1 , will be known at timet1, the interest payments are
exchanged at timet2, when the forward (fictitious) loan is due.
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In the case of market-traded FRA contracts, there is one additional complication. The settle-
ment isnot done in-arrears at timet2. Instead, FRAs are settled at timet1, and the transaction
will involve the following discounted cash flows. The

(Lt1 − Ft0)δN
1 + Lt1δ

(25)

will be received at timet1, if Lt1>Ft0 at datet1. On the other hand,

(Ft0 − Lt1)δN
1 + Lt1δ

(26)

will be paid at timet1, if Lt1< Ft0 . Settling att1 instead oft2 has one subtle advantage for
the FRA seller, which is often a bank. If during [t0, t1] the interest rate has moved in favor of
the bank, time-t1 settlement will reduce the marginal credit risk associated with the payoff. The
bank can then operate with a lower credit line.

4.2.1. An Interpretation

Note one important interpretation. A FRA contract can be visualized as anexchangeof two
interest payments. The purchaser of the FRA will be paying the known interestFt0δN and is
accepting the (unknown) amountLt1δN . Depending on which one is greater, the settlement
will be a receipt or a payment. The sumFt0δN can be considered, as of timet0, as the fair
payment market participants are willing to make against the random and unknownLt1δN . It
can be regarded as the time to “market value” ofLt1δN .

4.3. FRA Contractual Equation

We can immediately obtain a synthetic FRA using the ideas displayed in Figure 4-5. Figure 4-5
displays a swap of a fixed rate loan of sizeN , against a floating rate loan of the same size. Thus,
we can write the contractual equation

Buying a FRA =
Fixed rate loan
startingt1
endingt2

+
Floating rate
deposit startingt1
endingt2

(27)

It is clear from the construction in Figure 4-5 that the FRAcontract eliminates the credit risk asso-
ciated with the principals—since the twoN ’s will cancel out—but leaves behind the exchange
of interest rate risk. In fact, we can push this construction further by “plugging in” the contractual
equation for the fixed rate forward loan obtained in formula (17) and get

Buying a FRA =
Loan with
maturityt2

+ Deposit with
maturityt1

+ Spot deposit
startingt1 endingt2

(28)
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This contractual equation can then be exploited to create new synthetics. One example is the
use of FRA strips.

4.3.1. Application: FRA Strips

Practitioners use portfolios of FRA contracts to formFRA strips. These in turn can be used
to construct synthetic loans and deposits and help to hedge swap positions. The best way to
understand FRA strips is with an example that is based on the contractual equation for FRAs
obtained earlier.

Suppose a market practitioner wants to replicate a 9-month fixed-rate borrowing syntheti-
cally. Then the preceding contractual equation implies that the practitioner should take a cash
loan at timet0, pay the Libor rateLt0 , andbuy aFRA stripmade oftwo sequential FRA con-
tracts, a (3×6) FRA and a (6×9) FRA. This will give a synthetic 9-month fixed-rate loan. Here
the symbol (3×6) meanst2 is 6 months andt1 is 3 months.

5. Futures: Eurocurrency Contracts

Forward loans do not trade in the OTC market because FRAs are much more cost-effective.
Eurocurrency futures are another attractive alternative. In this section, we discuss Eurocurrency
futures using the Eurodollar (ED) futures as an example and then compare it with FRAcontracts.
This comparison illustrates some interesting aspects of successful contract design in finance.

FRAcontracts involve exchanges of interest payments associated with a floating and a fixed-
rate loan. The Eurodollar futures contracts trade future loansindirectly. The settlement will be
in cash and the futures contract will again result only in an exchange of interest rate payments.
However, there are some differences with the FRA contracts.

Eurocurrency futurestrade the forward loans (deposits) shown in Figure 4-1 as homogenized
contracts. These contracts deal with loans and deposits inEuromarkets, as suggested by their
name.Thebuyerof the Eurodollar futures contract is a potentialdepositorof 3-month Eurodollars
and will lock in a future deposit rate.

Eurocurrency futures contracts do not deliver the deposit itself. At expiration datet1, the
contract is cash settled. Suppose we denote the price of the futures contract quoted in the market
by Qt0 . Then thebuyerof a 3-month Eurodollar contract “promises” to deposit100(1 − F̃t0

1
4 )

dollars at expiration datet1 and receive100 in 3 months. Theimpliedannual interest rate on
this loan is then calculated by the formula

F̃t0 =
100.00 − Qt0

100
(29)

This means that the price quotations are related to forward rates through the formula

Qt0 = 100.00(1 − F̃t0) (30)

However, there are important differences with forward loans. The interest rate convention used
for forward loans is equivalent to amoney market yield. For example, to calculate the time-t1
present value at timet0 we let

PV (t0, t1, t2) =
100

(1 + Ft0δ)
(31)

Futures contracts, on the other hand, use a convention similar todiscount ratesto calculate the
time-t1 value of the forward loan

˜PV (t0, t1, t2) = 100(1 − F̃t0δ) (32)
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If we want the amount traded to be the same:

PV (t0, t1, t2) = ˜PV (t0, t1, t2), (33)

the two forward rates on the right-hand side of formulas (31) and (32)cannotbe identical. Of
course, there are many other reasons for the right-hand side and left-hand side in formula (33)
not to be the same. Futures markets have mark-to-market; FRA markets, in general, do not.
With mark-to-market, gains and losses occur daily, and these daily cash flows may becorrelated
with the overnight funding rate. Thus, the forward rates obtained from FRA markets need to be
adjusted to get the forward rate in the Eurodollar futures, and vice versa.

Example:

Suppose at timet0, futures markets quote a price

Qt0 = 94.67 (34)

for a Eurodollar contract that expires on the third Wednesday of December 2002. This
would mean two things. First, the implied forward rate for that period is given by:

Ft0 =
100.00 − 94.67

100
= 0.0533 (35)

Second, the contract involves a position on the delivery of

100
(

1 − .0533
1
4

)
= 98.67 (36)

dollars on the third Wednesday of December 2002.

At expiry these funds will never be deposited explicitly. Instead, the contract will be cash
settled. For example, if on expiration the exchange has set the delivery settlement price
at Qt1 = 95.60, this would imply a forward rate

Ft1 =
100 − 95.60

100
= 0.0440 (37)

and a settlement

100
(

1 − .0440
1
4

)
= 98.90 (38)

Thus, the buyer of the original contract will be compensated as if he or she is making a
deposit of 98.67 and receiving a loan of 98.90. The net gain is

98.90 − 98.67 = 0.23 per 100 dollars (39)

This gain can be explained as follows.When the original position was taken, the (forward)
rate for the future 3-month deposit was 5.33%. Then at settlement this rate declined
to 4.4%.

Actually, the above example is a simplification of reality as the gains would never be received as
a lump-sum at the expiry due to marking-to-market. The mark-to-market adjustments would lead
to a gradual accumulation of this sum in the buyer’s account. The gains will earn some interest
as well. This creates another complication. Mark-to-market gains losses may be correlated with
daily interest rate movements applied to these gains (losses).
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5.1. Other Parameters

There are some other important parameters of futures contracts. Instead of discussing these in
detail, we prefer to report contract descriptions directly. The following table describes this for
the CME Eurodollar contract.

Delivery months : March, June, September, December (for 10 years)
Delivery (Expiry) day : Third Wednesday of delivery month
Last trading day : 11.00 Two business days before expiration
Minimum tick : 0.0025 (for spot-month contract)
“Tick value” : USD 6.25
Settlement rule : BBA Libor on the settlement date

The design and the conventions adopted in the Eurodollar contract may seem a bit odd to the
reader, but the contract is a successful one. First of all, quotingQt0 instead of the forward rate
F̃t0 makes the contract similar to buying and selling a futures contract on T-bills. This simplifies
related hedging and arbitrage strageties. Second, as mentioned earlier, the contract is settled in
cash. This way, the functions of securing a loan and locking in an interest rate are successfully
separated.

Third, the convention of using alinear formula to represent the relationship betweenQt0 and
F̃t0 is also a point to note. Suppose the underlying time-t1 deposit is defined by the following
equation

D(t0, t1, t2) = 100(1 − F̃t0δ) (40)

A small variation of the forward ratẽFt0 will result in aconstantvariation inD(t0, t1, t2):

∂D(t0, t1, t2)
∂F̃t0

= −δ100 = −25 (41)

Thus, thesensitivityof the position with respect to the underlying interest rate risk is constant,
and the product is trulylinear with respect toF̃t0 .

5.1.1. The “TED Spread”

The difference between the interest rates on Treasury Notes (T-Notes) and Eurodollar (ED)
futures is called theTED spread. T-Note rates provide a measure of the U.S. government’s
medium term borrowing costs. Eurodollar futures relate to short-term private sector borrowing
costs. Thus the “TED spread” has credit risk elements in it.12

Traders form strips of Eurodollar futures and trade them against T-Notes of similar maturity.
A similar spread can be put together using Treasury Bills (T-bills) and Eurodollars as well.
Given the different ways of quoting yields, calculation of the spread involves some technical
adjustments. T-Notes use bond equivalent yields whereas Eurodollars are quoted similar to
discount rate basis. The calculation of the TED spread requires putting together strips of futures
while adjusting for these differences. There are several technical points that arise along the way.

Once the TED spread is calculated, traders put on trades to benefit from changes in the yield
curve slope and in private sector credit risk. For example, traders wouldlong the TED spread if

12 During the credit crisis of 2007–2008, TED spread was often used as a measure of banking sector credit risk.
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they expected the yield spread towiden. In the opposite case, they wouldshortthe TED spread
and would thus benefit from thenarrowingof the yield spread.

5.2. Comparing FRAs and Eurodollar Futures

A brief comparison of FRAs with Eurocurrency futures may be useful. (1) Being OTC con-
tracts, FRAs are more flexible instruments, since Eurodollar futures trade in terms of preset
homogeneouscontracts. (2) FRAs have the advantage ofconfidentiality. There is no require-
ment that the FRA terms be announced. The terms of a Eurocurrency contract are known.
(3) There are, in general, nomargin requirementsfor FRAs and themark-to-market requirements
are less strict.With FRAs, money changes hands only at the settlement date. Eurocurrency futures
come with margin requirements as well as with mark-to-market requirements. (4) FRAs have
counterparty risk, whereas the credit risk of Eurocurrency futures contracts are insignificant.
(5) FRAs are quoted on an interest rate basis while Eurodollar futures are quoted on a price basis.
Thus a trader who sells a FRA will hedge this position by selling a Eurodollar contract as well.
(6) Finally, an interesting difference occurs with respect tofungibility. Eurocurrency contracts
are fungible, in the sense that contracts with the same expiration can be netted against each other
even if they are entered into at different times and for different purposes. FRA contracts cannot
be netted against each other even with respect to the same counterparty, unless the two sides
have a specific agreement.

5.2.1. Convexity Differences

Besides these structural differences, FRAs and Eurocurrency futures have different convexities.
The pricing equation for Eurocurrency futures is linear inF̃t0 , whereas the market traded FRAs
have a pricing equation that is nonlinear in the corresponding Libor rate. We will see that this
requiresconvexity adjustments, which is one reason why we used different symbols to denote
the two forward rates.

5.3. Hedging FRAs with Eurocurrency Futures

For short-dated contracts, convexity and other differences may be negligible, and we may ask
the following question. Putting convexity differences aside, can we hedge a FRA position with
futures, and vice versa?

It is best to answer this question using an example. The example also illustrates some real-
world complications associated with this hedge.

Example:

Suppose we are given the following Eurodollar futures prices on June 17, 2002:

September price (delivery date: September 16) 96.500 (implied rate= 3.500)

December price (delivery date: December 16) 96.250 (implied rate= 3.750)

March price (delivery date: March 17) 96.000 (implied rate= 4.000)

A trader would like tosell a (3 × 6) FRA on June 17, with a notional amount of
USD100,000,000. How can the deal be hedged using these futures contracts?

Note first that according to the value and settlement date conventions, the FRA will run
for the period September 19 through December 19 and will encompass 92 days. It will
settle against the Libor fixed on September 17. The September futures contract, on the
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other hand, will settle against the Libor fixed on September 16 and is quoted on a 30/360
basis. Thus, the implied forward rates will not be identical for this reason as well.

Let f be the FRA rate andε be the differences between this rate and the forward rate
implied by the futures contract. Using formula (25), the FRA settlement, with notional
value of 100 million USD, may be written as

100m ((0.035 + ε) − Libor) 92
360(

1 + Libor 92
360

) (42)

Note that this settlement is discounted to September 19 and will be received once the
relevant Libor rate becomes known. Ignoring mark-to-market and other effects, a futures
contract covering similar periods will settle at

α

(
1m(0.0350 − Libor)

90
360

)
(43)

Note at least two differences. First, the contract has a nominal value of USD1 million.
Second, 1 month is, by convention, taken as 30 days, while in the case of FRA it was the
actual number of days. Theα is the number of contracts that has to be chosen so that
the FRA position is correctly hedged.

The trader has to chooseα such that the two settlement amounts are as close as possible.
This way, by taking opposite positions in these contracts, the trader will hedge his or
her risks.

5.3.1. Some Technical Points

The process of hedging is an approximation that may face several technical and practical diffi-
culties. To illustrate them we look at the preceding example once again.

1. Suppose we tried to hedge (or price) astrip of FRAs rather than having a single FRA be
adjusted to contract using a strip of available futures contracts. Then the strip of FRAs
will have to deal with increasing notional amounts. Given that futures contracts havefixed
notional amounts, contract numbers need to be adjusted instead.

2. As indicated, a 3-month period in futures markets is 90 days, whereas FRA contracts
count the actual number of days in the corresponding 3-month period.

3. Given the convexity differences in the pricing formulas, the forward rates implied by the
two contracts are not the same and, depending on Libor volatility, the difference may be
large or small.

4. There may be differences of 1 or 2 days in the fixing of the Libor rates in the two contracts.

These technical differences relate to this particular example, but they are indicative of most
hedging and pricing activity.

6. Real-World Complications

Up to this point, the discussion ignored some real-life complications. We made the following
simplifications. (1) We ignored bid-ask spreads. (2) Credit risk was assumed away. (3) We
ignored the fact that the fixing date in an FRA is, in general, different from the settlement
date. In fact this is another date involved in the FRA contract. Let us now discuss these
issues.
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6.1. Bid-Ask Spreads

We begin with bid-ask spreads. The issue will be illustrated using a bond market construction.
When we replicate a forward loan via the bond market, we buy aB(t0, t1) bond and short-sell a
B(t0, t2) bond. Thus, we have to use ask prices forB(t0, t1) and bid prices forB(t0, t2). This
means that the asking price for a forward interest rate will be

1 + F ask
t0 δ =

B(t0, t1)ask

B(t0, t2)bid
(44)

Similarly, when the client sells a FRA, he or she has to use the bid price of the dealers and
brokers. Again, going through the bond markets we can get

1 + F bid
t0 δ =

B(t0, t1)bid

B(t0, t2)ask
(45)

This means that

F bid
t0 < F ask

t0 (46)

The same bid-ask spread can also be created from the money market synthetic using the bid-ask
spreads in the money markets

1 + F ask
t0 δ =

1 + L1bid
t0 δ1

1 + L2ask
t0 δ2

(47)

Clearly, we again have

F bid
t0 < F ask

t0 (48)

Thus, pricing will normally yield two-way prices.
In market practice, FRA bid-ask spreads are not obtained in the manner shown here. The

bid-ask quotes on the FRA rate are calculated by first obtaining a rate from the corresponding
Libors and then adding a spread to both sides of it. Many practitioners also use the more liquid
Eurocurrency futures to “make” markets.

6.2. An Asymmetry

There is another aspect to using FRAs for hedging purposes. The net return and net cost from
an interest rate position will be asymmetric since, whether you buy (pay fixed) or sell (receive
fixed), a FRAalwayssettles against Libor. But Libor is an offer (asking) rate, and this introduces
an asymmetry.

We begin with a hedging of floating borrowing costs. When a company hedges a floating
borrowing cost, both interest rates from the cash and the hedge will be Libor based. This
means that:

• The company pays Libor+ margin to the bank that it borrows funds from.
• The company pays the fixed FRA rate to the FRA counterparty for hedging this floating

cost.
• Against which the company receives Libor from the FRA counterparty.

Adding all receipts and payments, the net borrowing cost becomesFRA rate+ margin.
Now consider what happens when a company hedges, say, a 3-month floatingreceipt. The

relevant rate for the cash position is Libid, the bid rate for placing funds with the Euromarkets.
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But a FRA always settles always against Libor. So the picture will change to

• Company receives Libid, assuming a zero margin.
• Company receives FRA rate.
• Company pays Libor.

Thus, the net return to the company will become FRA-(Libor-Libid).

7. Forward Rates and Term Structure

A detailed framework for fixed income engineering will be discussed in Chapter 15. However,
some preliminary modeling of the term structure is in order. This will clarify the notation and
some of the essential concepts.

7.1. Bond Prices

Let {B(t0, ti), i = 1, 2 . . . , n} represent thebond price family, where eachB(t0, ti) is the
price of a default-free zero-coupon bond that matures and pays $1 at timeti. These{B(t0, ti)}
can also be viewed as a vector ofdiscountsthat can be used to value default-free cash flows.

For example, given a complicated default-free asset,At0 , that pays deterministic cash flows
{Cti

} occurring at arbitrary times,ti, i = 1, . . . , k, we can obtain the value of the asset easily
if we assume the following bond price process:

At0 =
∑

i

Cti
B(t0, ti) (49)

That is to say, we just multiply thetith cash flow with the current value of one unit of currency
that belongs toti, and then sum overi.

This idea has an immediate application in the pricing of a coupon bond. Given a coupon
bond with a nominal value of $1 that pays a coupon rate ofc% at timesti, the value of the bond
can easily be obtained using the preceding formula, where the last cash flow will include the
principal as well.

7.2. What Forward Rates Imply

In this chapter, we obtained the important arbitrage equality

1 + F (t0, t1, t2)δ =
B(t0, t1)
B(t0, t2)

(50)

where theF (t0, t1, t2) is written in the expanded form to avoid potential confusion.13

It implies a forward rate that applies to a loan starting att1 and ending att2. Writing this
arbitrage relationship forall the bonds in the family{B(t0, ti)}, we see that

1 + F (t0, t0, t1)δ =
B(t0, t0)
B(t0, t1)

(51)

13 Here theδ has noi subscript. This means that the periodsti − ti−1 are constant acrossi and are given by
(ti − ti−1)/360.
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1 + F (t0, t1, t2)δ =
B(t0, t1)
B(t0, t2)

(52)

. . . . . . (53)

1 + F (t0, tn−1, tn)δ =
B(t0, tn−1)
B(t0, tn)

(54)

Successively substituting the numerator on the right-hand side using the previous equality
and noting that for the first bond we haveB(t0, t0) = 1, we obtain

B(t0, tn) =
1

(1 + F (t0, t0, t1)δ) . . . (1 + F (t0, tn−1, tn)δ)
(55)

We have obtained an important result. The bond price family{B(t0, ti)} can be expressed
using the forward rate family,

{F (t0, t0, t1), . . . , F (t0, tn−1, tn)} (56)

Therefore if all bond prices are given we can determine the forward rates.

7.2.1. Remark

Note that the “first” forward rateF (t0, t0, t1) is contracted at timet0 and applies to a loan that
starts at timet0. Hence, it is also thet0 spot rate:

(1 + F (t0, t0, t1)δ) = (1 + Lt0δ) =
1

B(t0, t1)
(57)

We can write this as

B(t0, t1) =
1

(1 + Lt0δ)
(58)

The bond price familyB(t0, ti) is the relevantdiscountsfactors that market practitioners use in
obtaining the present values of default-free cash flows. We see that modelingFt0’s will be quite
helpful in describing the modeling of the yield curve or, for that matter, the discount curve.

8. Conventions

FRAs are quoted as two-way prices in bid-ask format, similar to Eurodeposit rates. A typical
market contributor will quote a 3-month and a 6-month series.

Example:

The 3-month series will look like this:

1 × 4 4.87 4.91
2 × 5 4.89 4.94
3 × 6 4.90 4.95
etc.

The first row implies that the interest rates are for a 3-month period that will start in
1 month. The second row gives the forward rate for a loan that begins in 2 months for a
period of 3 months and so on.
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The 6-month series will look like this:

1 × 7 4.87 4.91
2 × 8 4.89 4.94
3 × 9 4.90 4.95
etc.

According to this table, if a client would like to lock in a fixed payer rate in 3 months for
a period of 6 months and for a notional amount of USD1 million, he or she wouldbuy
the3s against 9sand pay the 4.95% rate. For 6 months, the actual net payment of the
FRA will be

1,000,000
(

Lt3
100 − .0495

)
1
2(

1 + 1
2

Lt3
100

) (59)

whereLt3 is the 6-month Libor rate that will be observed in 3 months.

Another convention is the use ofLibor rate as areference ratefor both the sellers and
the buyers of the FRA.Libor being an asking rate, one might think that a client who sells a
FRA may receive a lower rate thanLibor. But this is not true, as the reference rate does not
change.

9. A Digression: Strips

Before finishing this chapter we discuss an instrument that is the closest real life equivalent to
the default-free pure discount bondsB(t0, ti). This instrument is calledstrips. U.S. strips have
been available since 1985 and UK strips since 1997.

Consider a long-termstraightTreasury bond, a German bund, or a British gilt and suppose
there are no implicit options. These bonds makecouponpayments during their life at regular
intervals. Their day-count and coupon payment intervals are somewhat different, but in essence
they are standard long-term debt obligations. In particular, they are not the zero-coupon bonds
that we have been discussing in this chapter.

Strips are obtained from coupon bonds. The market practitioner buys a long-term coupon
bond and then “strips” each coupon interest payment and the principal and trades themseparately.
Such bonds will be equivalent to zero-coupon bonds except that, if needed, one can put them
back together and reconstruct the original coupon bond.

The institution overseeing the government bond market, the Bank of England in the United
Kingdom or the Treasury in the United States, arranges the necessary infrastructure to make
stripping possible and also designates the strippable securities.14 Note that only some particular
dealers are usually allowed to strip and to reconstruct the underlying bonds. These dealers put
in a request to strip a bond that they already have in their account and then they sell the pieces

14 Stripping a Gilt costs less than$2 and is done in a matter of minutes at the touch of a button. Although it changes
depending on the market environment, about 40% of a bond issue is stripped in the United States and in the United
Kingdom.
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separately.15As an example, a 10-year gilt is strippable into 20 coupons plus the principal. There
will be 21 zero-coupon bonds with maturities 6, 12, 18, 24 (and so on) months.

10. Conclusions

This chapter has shown, using simple examples, financial engineering applications that use
forward loans and FRAs. We obtained new contractual equations and introduced the forward rate
(Libor) processes. The chapter continued to build on the simple graphical financial engineering
methods that are based on cash flow manipulations.

Suggested Reading

There are many more fixed income instruments involving more complicated parameters than
those discussed here. Some of these will certainly be examined in later chapters. But reading
some market-oriented books that deal with technical aspects of these instruments may be helpful
at this point. Two such books areQuesta (1999) andTuckman (2002).Flavell (2002) is another
introduction.

15 The reason for designing some bonds as strippable is because (1) large bond issues need to be designated and
(2) the coupon payment dates need to be such that they fall on the same date, so that when one strips a 2- and a 4-year
bond, the coupon strips for the first 2 years become interchangeable. This will increase the liquidity of the strips and
also make their maturity more homogeneous.
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Exercises

1. You have purchased 1 Eurodollar contract at a price ofQ0 = 94.13, with an initial margin
of 5%. You keep the contract for 5 days and then sell it by taking the opposite position.
In the meantime, you observe the following settlement prices:

{Q1 = 94.23, Q2 = 94.03, Q3 = 93.93, Q4 = 93.43, Q5 = 93.53} (60)

(a) Calculate the string of mark-to-market losses or gains.
(b) Suppose the spot interest rate during this 5-day period was unchanged at 6.9%.

What is the total interest gained or paid on the clearing firm account?
(c) What are the total gains and losses at settlement?

2. The treasurer of a small bank has borrowed funds for 3 months at an interest rate of 6.73%
and has lent funds for 6 months at 7.87%. The total amount is USD38 million.

To cover his exposure created by the mismatch of maturities, the dealer needs to
borrow another USD38 million for months, in 3 months’ time, and hedge the position
now with a FRA.

The market has the following quotes from three dealers:

BANK A 3 × 6 6.92–83
BANK B 3 × 6 6.87–78
BANK C 3 × 6 6.89–80

(a) What is (are) the exposure(s) of this treasurer? Represent the result on cash flow
diagrams.

(b) Calculate this treasurer’s break-even forward rate of interest, assuming no other
costs.

(c) What is the best FRA rate offered to this treasurer?
(d) Calculate the settlement amount that would be received (paid) by the treasurer

if, on the settlement date, the Libor fixing was 6.09%.

3. A corporation will receive USD7 million in 3 months’ time for a period of 3 months.
The current 3-month interest rate quotes are 5.67 to 5.61. The Eurodollar futures price
is 94.90.

Suppose in 3 months the interest rate becomes 5.25% for 3-month Eurodeposits and
the Eurodollar futures price is 94.56.

(a) How many ticks has the futures price moved?
(b) How many futures contracts should this investor buy or sell if she wants to lock

in the current rates?
(c) What is the profit (loss) for an investor who bought the contract at 94.90?

4. Suppose practitioners learn that the British Banker’s Association (BBA) will change the
panel of banks used to calculate the yen Libor. One or more of the “weaker” banks will
be replaced by “stronger” banks at a future date.

The issue here is not whether yen Libor will go down, as a result of the panel now
being “stronger.” In fact, due to market movements, even with stronger banks in the panel,
the yen Libor may in the end go up significantly. Rather, what is being anticipated is that
the yen Libor should decrease in Londonrelativeto other yen fixings, such as Tibor. Thus,
to benefit from such a BBA move, the market practitioner must form a position where the
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risks originating from market movements are eliminated and the “only” relevant variable
remains the decision by the BBA.

(a) How would a trader benefit from such a change without taking on too much
risk?

(b) Using cash flow diagrams, show how this can be done.
(c) In fact, show whichspreadFRA position can be taken. Make sure that the

position is (mostly) neutral toward market movements and can be created, the
only significant variable being the decision by the BBA.

(From IFR, issue 1267) Traders lost money last week following the British
Bankers’ Association (BBA) decision to remove one Japanese bank net from
the yenLibor fixing panel. The market had been pricing in no significant
changes to the panel just the day before the changes were announced.

Prior to the review, a number of dealers were reported to have been short the
Libor/Tibor spread by around 17 bp, through a twos into fives forward rate
agreement (FRA) spread contract. This was in essence a bet that the Japanese
presence on theLibor fixing panel would be maintained.

When the results of the review were announced on Wednesday January 20, the
spread moved out by around 5 bp to around 22 bp—leaving the dealers with
mark-to-market losses. Some were also caught out by a sharp movement in
the one-year yen/dollarLibor basis swap, which moved in from minus 26 bp
to minus 14 bp.

The problems for the dealers were caused by BBA’s decision to alter the nature
of the fixing panel, which essentially resulted in one Japanese bank being
removed to be replaced by a foreign bank. Bank of China, Citibank, Tokai
Bank and Sakura were taken out, while Deutsche Bank, Norinchukin Bank,
Rabobank and WestLB were added.

The move immediately increased the overall credit quality of the grouping of
banks responsible for the fixing rate. This caused the yenLibor fix—the average
cost of panel banks raising funds in the yen money market—to fall by 8 bp in
a single day. Dealers said that one Japanese bank was equivalent to a 5 bp
lower yenLibor rate and that the removal of the Bank of China was equivalent
to a 1 bp or 2 bp reduction.

Away from the immediate trading losses, market reaction to the panel change
was mixed. The move was welcomed by some, who claimed that the previous
panel was unrepresentative of the yen cash business being done.

“Most of the cash is traded in London by foreign banks. It doesn’t make sense
to have half Japanese banks on the panel,” said one yen swaps dealer. He
added that because of the presence of a number of Japanese banks on the
panel, yenLibor rates were being pushed above where most of the active yen
cash participants could fund themselves in the market.

Others, however, disagreed. “It’s a domestic [Japanese] market at the end
of the day. The BBA could now lose credibility in Japan,” said one US bank
money markets trader.

BBA officials said the selections were made by the BBA’s FX and Money
Markets Advisory Panel, following private nominations and discussions with
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the BBALibor Steering Group. They said the aim of the advisory panel was to
ensure that the contributor panels broadly reflected the “balance of activity in
the interbank deposit market.”

5. You are hired by a financial company in New Zealand and you have instant access to
markets. You would like to lock in a 3-month borrowing cost in NZ$ for your client. You
consider a NZ$1 × 4 FRA. But you find that it is overpriced as the market is thin.

So you turn to Aussie. A$ FRAs are very liquid. It turns out that the A$ and NZ$
forwards are also easily available.

In particular, you obtain the following data from Reuters:
A$/NZ$ Spot the: 1.17/18

1-m forward: 1.18/22
3-m forward: 1.19/23
4-m forward: 1.28/32

A$ FRA’s 1 × 4 8.97
(a) Show how you can create a1 × 4 NZ$ from these data.
(b) Show the cash flows.
(c) What are the risks of your position (if any) compared to a direct1 × 4 NZ$

FRA?
(d) To summarize the lessons learned from this exercise (if any), do you think there

must be arbitrage relationships between the FRA markets and currency
forwards? Explain. Or better, provide the relevant formulas.

6. You are given the following information:

3-m Libor 3.2% 92 days

3 × 6 FRA 3.3%–3.4% 90 days
6 × 9 FRA 3.6%–3.7% 90 days
9 × 12 FRA 3.8%–3.9% 90 days

(a) Show how to construct a synthetic 9-month loan with fixed rate beginning with
a 3-month loan. Plot the cash flow diagram.

(b) What is the fixed 9-month borrowing cost?


